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3
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Finite element   method based micromechanics has been used for predicting the multi-axial 

failure strengths of open cell foams which have tetrakaidecahedral unit-cells. Low density 

foams with equi-sided and Kelvin-elongated tetrakaidecahedron as unit cells are studied. 

The struts are modeled using three-dimensional beam elements. The effect of varying cross 

section on the failure strengths is presented. Failure envelopes for two-dimensional and 

three-dimensional stress states are plotted for foams with equisided and elongated 

tetrakaidecahedron unit cells. Effect of anisotropy in foams with elongated 

tetrakaidecahedral unit cells on the failure envelopes is also discussed.  

I. Nomenclature 

a1 = Length of the representative volume element 

a2 = Width of the representative volume element 

a3 = Height of the representative volume element 

V = Volume of the representative volume element 

fij = Force in the direction j when displacement is applied in the direction i 

ε1, ε2, ε3 = Strain components in the principal X, Y,Z directions 

[C] = Stiffness matrix of the foam 

ui = Displacement in the i direction 

ε0 = Applied macro-strain 

Ei = Young’s modulus in the i direction 

Gij = Shear modulus in direction j on the plane whose normal is in direction i 

νij = Poisson’s ratio 

Ix,Iy = Moment of inertia in the X and the Y directions 

J = Torsion constant 

ρs = Density of the strut material 

Es = Elastic modulus of the strut material 

νs = Poisson ratio of the strut material 

A = Cross sectional area of the strut 

d = Length of the side of the equilateral triangle cross section 

l = Length of each strut in the tetrakaidecahedron 

r = Radius of the 3-cusp hypocycloid cross section 

Δui i= Difference in translational displacement along axis i  

Δθi i= Difference in rotational displacement along axis i  

b = Dimension of the top, bottom squares of the elongated tetrakaidecahedron unit cell 

L  = Dimension of the long edges of the elongated tetrakaidecahedron unit cell 

S* = Failure strength of the constituent strut material 

Si = Principal stress in the strut 
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II. Introduction 

 

 Cellular polymeric foams are finding wide applications in energy absorption devices, insulators, packaging, and 

cores of sandwich panels. Cellular foams are lightweight, highly compressible and have useful mechanical, thermal 

and acoustic properties. Gibson and Ashby [1] define foams as special cellular materials constituting solid struts or 

thin plate like materials bridged together. Foams are generally made by dispersing gas into a liquid material and then 

cooling it to solidify. Foams in comparison to solid metals and ceramics have been found to have lower thermal 

conductivity, lower density and capacity to absorb large amount of energy. 

Advanced foams have found a great potential for use in automotive, aircraft, and space vehicle structures. A 

special application of these materials is to provide thermal insulation to external fuel tanks and thermal protection 

systems (TPS) of space vehicles. Polyurethane foams have been the material of choice for external fuel tank 

insulation of space vehicles due to low density. With ongoing research focused on areas such as understanding 

mechanisms that cause foam fracture and debris liberation [2] during takeoff and during the operation of the space 

vehicle, a thorough understanding of this foam’s mechanical response behavior, in the form of an accurate 

characterization of its strength and stiffness properties would be an essential step and is the main objective of the 

current work. 

 Foam cells result from a blowing-gas diffusing into bubbles that are nucleated or stirred into the system at the 

time of mixing. As early as 1887, Thompson [3] showed that packed in a BCC structure, a tetrakaidecahedron – a 

14-faced polyhedron – is the shape that satisfies the minimum surface energy condition for mono-dispersed bubbles. 

Microcellular graphitic carbon foams were first developed at the US Air Force Research Laboratory in the 1990s 

[4].Further, studies on foams [5] have confirmed that the repeating unit cell of foam resulting from a bubble 

nucleation process is a tetrakaidecahedron.                                                                                                                 

 With this recognition of a repeating pattern, principles of micromechanics have been used [6] to characterize 

cellular foams. These methods are based on simulating a characteristic representative part of the structure that 

periodically repeats itself, instead of simulating the entire model. Foams with simple representative unit cell 

structures such as cube [7], to hexagonal cell structures, to a regular tetrakaidecahedron [8] as the unit cell, have 

been studied and have been characterized for their mechanical behavior. 

 The literature available on characterizing the mechanical response of foams can be broadly classified into 

analytical [9,10,11,12] and experimental [13,14,15]. 

 Analytical models that have been developed focus primarily on predicting mechanical and strength properties. 

Assuming that the unit cell edges behave like a three dimensional beam, the mechanics of deformation of the 

tetrakaidecahedron unit cell leads to a set of equations for the effective Young’s modulus, Poisson’s ratio and tensile 

strength of the foam in the principal material directions [10,12]. The equations for these elastic constants have been 

derived and have been written in terms of the cell edge length, and the axial, flexural and torsional rigidities of the 

strut cross section. Also the variation of these properties with relative density (the ratio of the density of the cellular 

medium to the density of the solid strut material) of the foam has been expressed. Currently, BX-265 and NCFI24-

124 are the two foams used to insulate the space shuttle external tanks. The photomicrographs of these two foams 

are shown in Figures 1a and 1b. Analysis of the foam structure from these micrographs has shown that due to 

forming and rising processes that takes place during fabrication, the unit cell of these foams is elongated in one of 

the three principal directions. Hence, this unit cell is called an elongated tetrakaidecahedron and the elongated 

direction is referred to as the rise direction. This makes the elongated foam orthotropic. 

 In a comprehensive study, Sullivan et al [15] in their experiments on BX265 and NCFI 24-124 come up with the 

trends for the stress-strain curves for obtaining material properties (Figure 2). As shown in the figure, the anisotropy 

of the foam structure is evident, as the stiffness in the rise direction is higher than the stiffness in the direction 

perpendicular to rise direction. 

 Sullivan et al also continue to derive analytical models for these foams with elongated tetrakaidecahedral unit 

cells. Their procedure is an extension of procedures used by Zhu et al [12] in deriving equations for foams with unit 

cells made out of equisided tetrakaidecahedron. They also derive equations for elastic moduli, poisson ratios and 

shear moduli. They also capture the variation of these properties with relative density.  

 In a previous study [20] the authors used a finite element based micromechanics procedure to calculate the 

stiffness properties of foam materials with both equisided and elongated unit cells. In this study the methods are 

extended to calculate multi-axial failure strengths.  

 Failure strengths have been calculated using direct micromechanics based methods [16, 17, 18, 21]. These 

methods use the method of superposition, in which a micro-stress field in the unit cell is determined for any given 
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homogenous macro-stress field applied on the foam. The failure criterion for the strut material is assumed to be 

known in this study. The foam is assumed to have failed if one of the struts in the unit cell fails due to the applied 

macro-stress field. 

III. Stiffness properties using finite element based micromechanics methods 

 
 A general tetrakaidecahedron having 24 vertices, 36 edges made of 8 six-sided polygons and 6 four-sided 

polygons (Figure 3) is more precisely called truncated octahedron; since it is created by truncating the corners of an 

octahedron [19].This is called an equi-sided tetrakaidecahedron. If it is generated by truncating the corners of a 

cuboid or hexahedron, it is called an elongated tetrakaidecahedron. Details about the geometry of the equi-sided and 

elongated tetrakaidecahedron are given in [20].  

 In this study, commercially available ABAQUS
® 

finite element software is employed for developing the model. 

A finite element model for the equi-sided tetrakaidecahedron made out of beam elements for struts is shown in 

Figure 4. The principal directions X, Y, and Z are considered to be along the lines passing through the centers of the 

squares on the front and back, the left and right and the top and the bottom, respectively. It should be noted that out 

of the 36 edges in the geometry, only 24 beam elements have been modeled. This is due to periodicity of the unit 

cell. Elaborate details about the equisided and elongated tetrakaidecahedron finite element beam models have been 

explained elsewhere [20]. The geometry dimensions and the material properties of the constituent strut material used 

in the equi-sided tetrakaidecahedron model are listed in Table 1. The strut material is considered as isotropic. In the 

current example the beam cross sections are approximated to be an equilateral triangle. Similar to an equisided 

tetrakaidecahedron, the geometry and the material properties of the constituent strut material used in the elongated 

tetrakaidecahedron model are listed in Table 2. The strut material is again considered to be isotropic. Using beam 

elements in the model requires a slenderness ratio (L/r’, where L is the length of the strut, r’ is the radius of gyration 

defined by r’
2
=I/A) to be greater than about 10. If the slenderness ratio is less than 10 but greater than 6, one can use 

shear-deformable beam elements and hope to obtain good results. If L/r’ is less than 6, one cannot use beam 

elements to model the deformation of the struts. One needs to resort to solid elements.  

 For both equi-sided and elongated tetrakaidecahedrons, two-node beam elements (classical Euler-Bernoulli beam 

element, B33 in the ABAQUS
®
 material library) with cubic formulation were used to model the unit cell. Three-

node quadratic elements (shear deformable Timoshenko beam elements, B32 in the ABAQUS
®
 material library) 

were used in some cases to study the effects of shear deformation on the overall properties of the foam.  

 Boundary conditions to be applied on the finite element model are obtained by relating micro-strains to the 

corresponding macro-strains. From the periodicity of the cell structure, the representative volume element (RVE) is 

identified to be the smallest cuboid that completely encloses the tetrakaidecahedron such that 6 square sides of the 

tetrakaidecahedron are on the 6 faces of the cuboid. The periodic boundary conditions that are applied on the unit 

cell surfaces are summarized in Table 3 and the nodal pairs that are subjected to these PBCs are shown in Figures 5a 

to 5c. 

  Further to applying the above periodic boundary conditions on the model, the equivalent orthotropic material 

properties with its principal material directions parallel to the edges of the cuboid are calculated as follows. It should 

also be noted that in this coordinate system the normal and shear deformations are uncoupled. First we derive the 

equations to determine the Young’s moduli and Poisson’s ratios in the principal material coordinates, 1, 2 and 3. The 

(macro-scale) stress-strain relations of the foam are written as: 

 

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

C C C

C C C

C C C

 

 

 

     
    

    
           (1) 

 

We subject the RVE to three independent deformations such that in each case only one normal strain is non-zero 

and other two normal strains are zero. For example, in the first case we apply periodic boundary conditions such that 

the cuboid expands only in the 1-direction and the strains in the other two directions are equal to zero, i.e., the 

dimensions of the cuboid in those directions do not change. Then the macro-strains are given by:  

 

1 2 31, 0 and 0    

 (2) 

Substituting Eq. (10) in (9), we get  
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1 11 12 13

2 21 22 23

3 31 32 33

1

0

0

C C C

C C C

C C C







     
    

    
         

                                                                             (3) 

Let the corresponding force resultants (ABAQUS® output)  in the three faces of the unit cell normal to the 1, 2 and 

3 directions be, respectively, F11, F21 and F31 (see Figure 6). Then the corresponding macro-stresses are obtained as:  

 

3111 21
1 2 3

1 2 3

, ,
FF F

A A A
    

 (4) 

 

where A1, A2 and A3are areas normal to the 1,2 and 3 directions which would be areas of the square surfaces in the 1, 

2, 3 directions of the representative volume element in case of the equisided tetrakaidecahedron unit cell and the 

areas of the the rectangular surfaces in the 1, 2, 3 directions of the representative volume element in case of the 

elongated tetrakaidecahedron unit cell. 

Substituting for the macro stresses and strains in Eq. (1) we obtain  

 

 

11 11 21 21 31 31, , ,C F C F C F  

 (5) 

Similarly we can deform the RVE in the other two directions and calculate second and third columns of [C]. For 

the case of shear, the calculations can be simplified, as there is no coupling between shear deformation and the 

normal deformation, and also between shear deformations in different planes. The straightforward method of 

determining the shear modulus Gij will be to relate the strain energy in the RVE to the strain energy density due to 

shear: 

 

2

2

1 2
or

2
ij ij ij

ij

U
U G V G

V



 

 (6) 

     

 The elastic constants of the foam with varying cross section could be determined by following the procedures 

similar to that of uniform cross section foam. In fact the struts can be modeled using one beam element as before but 

with equivalent cross sectional properties. Since the deformations (strains, curvatures, etc.) in a beam are inversely 

proportional to , ,A I J   it is obvious that the equivalent uniform cross sectional properties could be obtained as 

 

2

2

2

2

2

2

1 1
,

( )

1 1
,

( )

1 1

( )

l

eff l

l

eff l

l

eff l

dx

A l A x

dx

I l I x

dx

J l J x



















 (7) 

 

Where the suffix eff denotes effective properties. In order to determine the above effective properties, one has to 

assume the nature of the cross section. In this study we assume the cross section of the strut is an equilateral triangle. 

Then the cross sectional dimension at the midspan d0, corresponding area A0 and the moments of inertia I0 and J0 are 

calculated as follows: 
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2

0 0

3

4
A d

 (8) 

 

4

0 0

3

96
I d

 (9) 

 

2

0
0

5 3

A
J 

 (10) 

Then the variation of moments of inertia using equation  along the length of the strut can be written as 

                                                        

2
4 2

0 4 2

2
4 2

0 4 2

( ) 86 1 ,

( ) 86 1

x x
I x I

l l

x x
J x J

l l

 
   

 

 
   

 

                                                                (11) 

where, 
2 2

l l
x     

It is desirable to compare the properties of foam with struts having a varying cross-section to foam with struts 

having uniform cross-section. One approach to get a good comparison is by keeping the relative density same in 

both the cases. This can be achieved by keeping the volume of the strut same in both cases: 

   

 

/2

/2

( )

l

l

A x dx Al






 (12) 

where, A is the area of the uniform cross-section, l is the length of the strut. Once A is calculated, one can 

determine the corresponding cross section dimension d , and the moments of inertia I and J  . 

 IV. Direct Micromechanics Method (DMM) to compute multi-axial failure strengths 

 

Analytical models have been formulated for both stiffness properties and failure strengths by Zhu et al [12] and 

Sullivan et al [15] where they assume that the failure strength of the foam occurs when the constituent element strut 

undergoes brittle failure. However, in these analytical models, the formulations are limited to cases of the foam 

structure experiencing a uniaxial state of stress. However, in reality, foam structures experience multi-axial states of 

stress. Direct Micromechanics Methods (DMM) deals with this limitation very effectively. 

The DMM was originally proposed by Sankar et al. and has been demonstrated in several of his works 

[16,17,18]. In Zhu et al. [21] the failure envelopes obtained from DMM are compared with the phenomenological 

failure criteria for plane stress states and they have been shown to match well. A similar observation, based on 

experimental results, has made by Daniel and Ishai [22], where again it is recommended that one should use several 

failure criteria and choose the most conservative criterion for a given state of stress which seems to closely match 

the failure envelope that has been traced by DMM. 

DMM can be considered as a computational laboratory to estimate failure strengths, the advantage being that a 

variety of loading conditions which may be hard to achieve through physical experiments can be simulated. For 

example, it is difficult to design a fixture and apply multi-axial loading beyond two or three dimensions.    However, 

even a 6-dimensional state of load can be applied using DMM as it is a computational method. 

The broader objective of predicting the failure strength of foam is computing a load factor for the foam when it 

is subjected to generalize given state of loading. The load factor is also equal to the factor of safety for the given set 

of stresses. The procedure that is adopted to calculate the load factor is as follows.  
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Consider a state of macro-stresses given by ,     
T

x y z xy yz xz        . The macro-strains 

due to the above stresses can be calculated as: 

 

     
1

C 




 (13) 

where, [ ]C is the stiffness matrix of the foam. 

The above macro-strain   can be represented as,    
T

xx yy zz xy yz xz         

This macro-strain manifests as micro-stresses in each constituent strut of the unit cell. We apply periodic 

boundary conditions on the unit cell surfaces corresponding to the above macro strains. Then the detailed stress field 

in all the 36 struts is calculated. These stresses are the micro-stresses corresponding to the applied macro-stress state. 

As mentioned earlier we assume that the failure criterion for the strut material is known. For example, if the strut 

fails in a brittle manner, one can use the maximum principal stress criterion.   

Although the six macro-strains can to be applied to the unit cell simultaneously, in practice we use the principle 

of superposition. The micro-stresses in the struts are calculated for unit values each of the six macro-strain 

components. Then using the principle of superposition the stresses in the strut are calculated for a given macro-strain 

state. 

  
 From the above state of stress, principal stresses at that critical point can be calculated. Once the principal 

stresses are calculated, any appropriate failure theory can be used for calculating load factor   For example, if the 

maximum stress theory is used for calculating the load factor, then the load factor is calculated as: 

 

 
 

*

1 1 3max , ,

S

S S S
 

 (14) 

where, *S is the strength of the solid strut material, 1 2 3, ,S S S are the 3 principal stresses. 

Thus load factor   can be calculated for all the 36 struts and the lowest load factor would be the critical load 

factor   for the given state of loading. If that lowest load factor is L , then  L  would be the critical load that 

can be applied before the failure onset in the foam.  

 Thus, assuming a uniaxial state of external loading, the failure strength in the direction of application of the 

external load can be calculated using the same procedure as described above. Similarly, a biaxial state of external 

load or triaxial or a multiaxial state of external load can be applied and the load factor   can be calculated. 

V. Results and discussion – Stiffness Properties 

 
The stiffness properties for both equisided and elongated tetrakaidecahedron unit cells are shown in Table 3 and 

Table 4, respectively. It is shown that the results for E and ν match well with the available analytical models – 

Model by Zhu, Knott, Mills [12] for equi-sided tetrakaidecahedron unit cell and the model by Sullivan, Ghosn, 

Lerch [15] for the elongated tetrakaidecahedron unit cell. The maximum error in the elastic constants was about 

0.55% for the elastic moduli and 0.35% for the shear moduli in case of the equisided tetrakaidecahedron unit cell. 

The maximum error in the elastic constants was about 0.82% in the case of the elongated tetrakaidecahedron unit 

cell. 

 The results contrasting the values of elastic constants for the variable cross section foam with that of an idealized 

uniform cross section foam are presented in Table 5. The relative density is assumed to be 0.165% in both cases.  It 

is seen that the Young’s modulus and shear modulus of ideal foams with uniform cross section is about 2.4 times 

that of varying cross section foam.     The reason for this is that most of the solid material being near the ends of the 

strut, thus making majority of length (about 60%) in the middle slender. This reduces the moments of inertia 

considerably making the struts more flexible.  
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Failure Strength results 

 

Figure 7 shows the failure envelope for foam with equisided tetrakaidecahedral unit cells with constant strut 

cross section subjected to different states of biaxial stresses. It should be noted that it is purely coincidental that the 

failure envelope obtained resembles the Tresca (Maximum shear stress) failure theory. One interesting aspect of this 

result is that we assume the struts fail in a brittle manner. However, the failure of the foam at macro-scale mimics 

that of a ductile material. One should note that there are 36 struts in the unit cell. The six sides of the hexagon in Fig 

(7) indicate that the failure mode switches from one strut to another strut as the state of stress changes continuously. 

In general the failure envelope should be a 32-sided polygon, however due to material symmetry; there are only six 

sides to the failure envelope.  This is shown in Figure 8. Figure 9 shows failure envelopes obtained for foam with 

equisided tetrakaidecahedral unit cells with constant strut cross section subjected to different states of biaxial 

stresses and an in-plane shear stress. This type of a loading is common in case of foams in the form of thin plates. As 

would be expected, as the magnitude of the in-plane shear stress is increased, the failure envelope shrinks to a point 

at the centre. Failure envelopes obtained for foam with equisided tetrakaidecahedral unit cells with constant strut 

cross section subjected to triaxial stresses has been shown in Figure 10. It should be noted that the stresses here have 

been plotted on a new coordinate axis such that it has a vector that is equally inclined to the old coordinate axis as 

one of its principal axes. This vector is called the hydrostatic vector and has direction 

cosines 1 1 1, ,
3 3 3

 
 
 

 in the 1 2 3, ,   space. In Figure 10, 1 2 3, ,S S S along the coordinate axes 

represent this new coordinate system. As seen in Figure 10, the failure envelopes corresponding to each 1S are 

obtained to be hexagons and as this 1S is increased, the hexagons contract and approach to a point. This has been 

pictorially depicted in Figure 11. Figure 12 shows the contrast in the failure envelopes for foam with equisided 

tetrakaidecahedral unit cells with constant strut cross section and varying cross section subjected to different states 

of biaxial stresses. As would be expected, the failure strength with varying cross section is reduced to a third of the 

strength seen in the case of constant cross section. 

Figure 13 shows the failure envelope for foam with elongated tetrakaidecahedral unit cells with constant strut 

cross section subjected to different states of biaxial stresses one applied in the rise-direction and the other applied in 

the perpendicular to rise-direction. In this case the failure envelope obtained does not look the same as that of the 

foam with equisided tetrakaidecahedral unit cells. The failure strength of the strut is assumed to be 0.17 GPa and the 

failure strength of the foam is obtained to be 1.7 MPa in the rise direction and 0.08 MPa in the perpendicular to rise 

directions. Failure envelope for foam with elongated tetrakaidecahedral unit cells with constant strut cross section 

subjected to different states of biaxial stresses applied on each of the perpendicular to rise-directions has been shown 

in Figure14. In this case the failure envelope obtained looks the same in both the axes. For the failure strength of the 

strut assumed to be 0.17 Gpa the failure strength obtained in the both the perpendicular to rise directions is 0.08 

MPa. Figure 15 shows failure envelopes obtained for foam with elongated tetrakaidecahedral unit cells with constant 

strut cross section subjected to different states of biaxial stresses in the rise direction and the perpendicular-to-rise 

direction and an in-plane shear stress. As the magnitude of the in-plane shear stress is increased, the failure envelope 

shrinks to a point at the centre. Figure 16 shows failure envelopes obtained for foam with elongated 

tetrakaidecahedral unit cells with constant strut cross section subjected to different states of biaxial stresses both the 

perpendicular-to-rise directions and an in-plane shear stress. Again, as the magnitude of the in-plane shear stress is 

increased, the failure envelope shrinks towards the centre. Figure 17 shows failure envelopes obtained for foam with 

elongated tetrakaidecahedral unit cells with constant strut cross section subjected to triaxial stresses. Again as in the 

case of the equisided tetrakaidecahedral unit cell case, the envelopes are plotted in the hydrostatic plane. However, 

unlike that the equisided foam, the hexagons don’t contract towards the centre. This is due to the anisotropic nature 

of the foam and warrants further investigation. 

 

VI. Summary 

 

A finite element based micromechanics has been used to calculate the elastic properties of foams with 

tetrakaidecahedral unit cells. It has been shown that the results for elastic constants match well with the available 

analytical models.  A methodology to deal with varying cross sections has also been considered. The same finite 

element based micromechanics methods has been extended to generate multi-axial failure envelopes for foams with 
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both equisided and elongated tetrakaidecahedral unit cells.  Again, the effect of varying cross-section on the failure 

envelope has been studied.  
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VIII.Figures 

 

     
 

 

 

 
 

 

 

 

 

 

 

Figure 1. Photomicrographs of foams used in insulation of external fuel tanks of space vehicles a) 

BX-265 and b) NCFI24-124 (Ref. [10]) 

Figure 2.  Stress-strain response for polyurethane foams used in external fuel tanks (Ref. [15]) D
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Figure 3.  Equisided tetrakaidecahedron 

Figure 4.  Equisided tetrakaidecahedron  - Beam model with 24 struts 
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Figure 5.  Nodal Pairs subjected to Periodic Boundary Conditions (PBCs) 

Fig 5a.  Top & Bottom Fig 5b. Right & Left 

Fig 5c. Front & Back 
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Figure 6.  Representative Volume Element (RVE) showing force resultants in the 3 directions 

when subjected to normal strain in the 1-direction on the 2 faces ,x a x a   

 

Figure 7.  Failure envelope obtained from Direct Micromechanics Method (DMM) for an 

equisided tetrakaidecahedron (Table 1) with constant strut cross section subjected to a biaxial 

state of stress 
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Figure 8.  Maximum Normal stress failure (shown in the left)  in the strut level manifests into the 

failure envelope as shown in the right for an equisided tetrakaidecahedron (Table 1) with 

constant strut cross section subjected to a biaxial state of stress 

Figure 9.  Failure envelope obtained from Direct Micromechanics Method (DMM) for an 

equisided tetrakaidecahedron (Table 1) with constant strut cross section subjected to a biaxial 

state of stress & an inplane shear stress 
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Figure 10.  Failure envelope obtained from Direct Micromechanics Method (DMM) for an 

equisided tetrakaidecahedron (Table 1) with constant strut cross section subjected to a triaxial 

state of stress plotted on the hydrostatic plane 
 

Figure 11.  Pictorial (not to scale) representation of the Failure envelope obtained from Direct 

Micromechanics Method (DMM) for an equisided tetrakaidecahedron (Table 1) with constant strut 

cross section subjected to a triaxial state of stress plotted on the hydrostatic plane 
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Figure 12.  Failure envelopes obtained from Direct Micromechanics Method (DMM) for an equisided 

tetrakaidecahedron (Table 1) with constant and varying strut cross section subjected to a biaxial 

state of stress 

Figure 13.  Failure envelope obtained from Direct Micromechanics Method (DMM) for an 

elongated tetrakaidecahedron (Table 2) with constant strut cross section subjected to a biaxial 

state of stress applied in the rise direction and the perpendicular-to-rise direction 

D
ow

nl
oa

de
d 

by
 B

ha
va

ni
 S

an
ka

r 
on

 A
pr

il 
2,

 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
0-

30
54

 



16 

 

 
 

 

 

 
 

 

Figure 14.  Failure envelope obtained from Direct Micromechanics Method (DMM) for an 

elongated tetrakaidecahedron (Table 2) with constant strut cross section subjected to a biaxial 

state of stress applied in both the perpendicular-to-rise directions 

Figure 15. Failure envelope obtained from Direct Micromechanics Method (DMM) for an 

elongated tetrakaidecahedron (Table 2) with constant strut cross section subjected to a biaxial 

state of stress in the rise direction, perpendicular-to-rise & an inplane shear stress 
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Figure 16. Failure envelope obtained from Direct Micromechanics Method (DMM) for an 

elongated tetrakaidecahedron (Table 2) with constant strut cross section subjected to a biaxial 

state of stress both the perpendicular-to-rise directions & an inplane shear stress 

Figure 17. Failure envelope obtained from Direct Micromechanics Method (DMM) for an 

elongated tetrakaidecahedron (Table 2) with constant strut cross section subjected to a triaxial 

state of stress plotted in the hydrostatic plane 
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IX. Tables 

 

 

 

Material Properties of the strut 

Density, ρs ( Kg/m
3
) 1650 

Elastic modulus, Es (GPa) 23.42 

Poisson ratio, s 0.33 

Ultimate Tensile Strength, 

*S (GPa) 
0.2342 

Geometry of the equisided 

tetrakaidecahedron unit cell 

(Fig. 3) 

L (mm) 1 

d (mm) 0.06 

Relative density 0.001653 

Cross-section properties 

(Equilateral Triangle) 

Cross sectional area, A (m
2
) 1.5588×10

-9
  

Moment of Inertia, Ix ,Iy (m
4
) 2.3382×10

-19
 

Torsion constant, J (m
4
) 4.6765×10

-19
 

 

 

 

 

 

 

Material Properties of 

the strut 

Density, ρs ( Kg/m
3
) 1650 

Elastic modulus, Es (GPa) 17 

Poisson ratio, vs 0.33 

Ultimate Tensile Strength, *S  

(GPa) 
0.17 

Geometry of the 

elongated 

tetrakaidecahedron 

unit cell (Fig. 5) 

L (μm) 77.2 

b (μm) 35.6 

θ (degrees) 53.57 

r (μm) 26 

H (μm) 248.85 

D (μm) 142.04 

Relative density 0.03481 

Cross-section 

properties (3-cusp 

hypocycloid) 

Cross sectional area, A (m
2
) 1.024×10

-10
 

Moment of Inertia, Ix ,Iy (m
4
) 1.403×10

-21
 

Torsion constant, J (m
4
) 2.806×10

-21
 

 

 

 

Table 1: Material properties of the strut, geometric properties, cross Sectional properties of the equisided 

tetrakaidecahedron unit cell 

Table 2: Material properties of the strut, geometric properties, cross Sectional properties of the elongated 

tetrakaidecahedron unit cell 
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  Macrostrain Non-Zero Displacement BC's 

1 ε1 = 1 u1(a1,x2,x3) - u1(0,x2,x3) = a1 

2 ε2 = 1 u2(x1,a2,x3) - u2(x1,0,x3) = a2 

3 ε3 = 1 u3(x1,x2,a3) - u3(x1,x2,0) = a3 

4 γ23 = 1 
u2(x1,x2,a3) – u2(x1,x2,0) = a3/2 

u3(x1,a2,x3) – u3(x1,0,x3) = a2/2 

5 γ31 = 1 
u1(x1,x2,a3) – u1(x1,x2,0) = a3/2 

u3(a1,x2,x3) – u3(0,x2,x3) = a1/2 

6 γ12 = 1 
u1(x1,a2,x3) – u1(x1,0,x3) = a2/2 

u2(a1,x2,x3) – u2(0,x2,x3) = a1/2 

 

 

 

 

 

 

Property 

Finite Element Model 

Analytical Model 

(Ref. [14]) 

% difference 

between analytical 

and Finite 

Element Model 
Euler-Bernoulli 

(2-node cubic) 

Shear 

deformable (3-

node quadratic) 

% difference 

between Euler-

Bernoulli model and 

Shear-deformable 

model 

Ex =Ex = Ez (GPa) 46.7×10
-6

 46.6×10
-6

 0.24 46.4×10
-6

 0.55 

νxy = νyz  = νxz 0.498 0.498 0.11 0.497 0.14 

Gxy = Gyz  = Gxz  (GPa) 14.9×10
-6

 14.8×10
-6

 0.43 14.9×10
-6

 0.35 

 

 

 

 

 

Property 

Finite Element Model 

Analytical Model 

(Ref. [11] / [21]) 

% difference 

between analytical 

and Finite Element 

Model 

Euler-Bernoulli (2-

node cubic) 

Shear deformable 

(3-node quadratic) 

% difference 

between Euler-

Bernoulli model and 

Shear-deformable 

model 

Ex = Ey (Mpa) 7.09 6.5 -9.04 7.07 0.29 

Ez (Mpa) 20.63 19.28 -6.99 20.8 -0.82 

νxy = νyx 0.0588 0.0757 22.28 0.0598 -1.84 

Table 4: Results obtained for the properties of Equisided Tetrakaidecahedron Unit cell with relative density 

0.1653% 

Table 5: Results obtained for the properties of Elongated Tetrakaidecahedron Unit cell with relative density 

3.45% 

Table 3: Periodic Boundary conditions  
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νxz = vyz 0.3745 0.3694 -1.39 0.373 0.47 

νzx = vzy 1.0934 1.0991 0.52 1.09 -0.31 

Gxy (Mpa) 2.07 1.95 -6.03 2.06  0.39  

Gyz = Gxz (Mpa) 6.74 6.25 -7.88 6.66  1.17  

 

 

 

 

 

 

 

  Uniform Cross-section Varying Cross-Section Ratio 

Elastic Modulus (E) (Pa) 46,402 19172 2.42 

Shear Modulus (G) (Pa) 14920 6183 2.41 

Moment of Inertia (I) (m
4
) 2.34×10

-19
 0.965×10

-19
 2.42 

Poisson Ratio (ν) 0.4975 0.4989 1.00 

 

 

Table 6: Results compared for the properties of Equisided Tetrakaidecahedron Unit cell with relative density 

0.1653% with Uniform Cross-Section and Varying Cross-Section 
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